** On power spirals of the $p$-dimensional Euclidean space
نویسندگان
چکیده
منابع مشابه
FUZZY HV -SUBSTRUCTURES IN A TWO DIMENSIONAL EUCLIDEAN VECTOR SPACE
In this paper, we study fuzzy substructures in connection withHv-structures. The original idea comes from geometry, especially from thetwo dimensional Euclidean vector space. Using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. We connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as Hv-groups...
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملOn the Isoptic Hypersurfaces in the n-Dimensional Euclidean Space
The theory of the isoptic curves is widely studied in the Euclidean plane E2 (see [1] and [13] and the references given there). The analogous question was investigated by the authors in the hyperbolic H2 and elliptic E2 planes (see [3], [4]), but in the higher dimensional spaces there is no result according to this topic. In this paper we give a natural extension of the notion of the isoptic cu...
متن کاملOn Isosceles Sets in the 4-Dimensional Euclidean Space
A subset X in the k-dimensional Euclidean space R that contains n points (elements) is called an n-point isosceles set if every triplet of points selected from them forms an isosceles triangle. In this paper, we show that there exist exactly two 11-point isosceles sets up to isomorphism and that the maximum cardinality of isosceles sets in R is 11 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky a fysiky
سال: 1947
ISSN: 1802-114X
DOI: 10.21136/cpmf.1947.121552